# DYNAMIC SPARSE X-RAY TOMOGRAPHY

## Paola Elefante

Ph. D. student

paola.elefante@helsinki.fi www.paolaelefante.com

January 30, 2015



X-rays contribute to cancer development.



X-rays contribute to cancer development.



Prevention as early diagnosis.



X-rays contribute to cancer development.



Save time and money.



Prevention as early diagnosis.



X-rays contribute to cancer development.



Prevention as early diagnosis.



Save time and money.



Material testing.

#### For instance:

angiography

#### For instance:

- angiography
- veterinary



#### For instance:

- angiography
- veterinary
- monitoring reaction to cancer medication





#### For instance:

- angiography
- veterinary
- monitoring reaction to cancer medication
- nondestructive testing





# Example: (2+1)-dim. angiography

Important cardiology test and procedure.



## Level Set Method





Photorealistic water effects. Largely used in animation movies.

## Level Set Method



 $\Gamma$ : plane dynamic curve.  $\phi = \phi(x,y)$ : level set function.  $\Gamma = \{(x,y): \phi(x,y)=0\}$  (zero level set of  $\phi$ ).  $\phi$  can be any function that models the contour.

## The new model

The X-ray attenuation is approximated by  $g(\Phi)$ . Our **cost functional** is:

$$F(u) = \frac{1}{2} ||A(g(u)) - m||_{L^2}^2 + \frac{\beta}{2} ||\nabla u||_{L^2}^2$$

g is a cutoff function we wisely choose.

By "weird differentiation" of F(u) we get to a PDE (evolution equation): the algorithmic time of its solution is  $\Phi$ .

## Level Set Method



## The story, so far

**2008**: Kolehmainen, Lassas, & Siltanen: level set method for 2D case ("normal" CT data).

**2013**: Niemi, Lassas, & Siltanen: level set method for (2+1)D case.

**Hopefully soon**: Elefante & friends: level set method for (3+1)D case.



www.phdcomics.com

## A comparison of methods

Let's take a couple of phantoms.





## A comparison of methods



## A comparison of methods



## Upcoming challenges

- Testing different cut-off functions.
- ▶ Generalizing to (3+1)D case.
- Generating smart simulated data.
- Testing on real data.
- Proving all the provable: conditions for the existence of a solution of the evolution equation, convergence proofs, etc.



## Thank you for your attention.



www.paolaelefante.com



www.aip2015.fips.fi

May 18th-22th, 2015